Search results for "ergodic measure"

showing 3 items of 3 documents

Periodic measures and partially hyperbolic homoclinic classes

2019

In this paper, we give a precise meaning to the following fact, and we prove it: $C^1$-open and densely, all the non-hyperbolic ergodic measures generated by a robust cycle are approximated by periodic measures. We apply our technique to the global setting of partially hyperbolic diffeomorphisms with one dimensional center. When both strong stable and unstable foliations are minimal, we get that the closure of the set of ergodic measures is the union of two convex sets corresponding to the two possible $s$-indices; these two convex sets intersect along the closure of the set of non-hyperbolic ergodic measures. That is the case for robustly transitive perturbation of the time one map of a tr…

Pure mathematicsMathematics::Dynamical SystemsGeneral MathematicsClosure (topology)Dynamical Systems (math.DS)01 natural sciencespartial hyperbolicityquasi-hyperbolic stringBlenderFOS: Mathematicsnon-hyperbolic measureErgodic theoryHomoclinic orbitMathematics - Dynamical Systems0101 mathematics[MATH]Mathematics [math]ergodic measureperiodic measureMathematicsfoliationsTransitive relationApplied MathematicsMSC (2010): Primary 37D30 37C40 37C50 37A25 37D25010102 general mathematicsRegular polygonTorusstabilityFlow (mathematics)systemsDiffeomorphismrobust cycleLyapunov exponent
researchProduct

A criterion for zero averages and full support of ergodic measures

2018

International audience; Consider a homeomorphism $f$ defined on a compact metric space $X$ and a continuous map $\phi\colon X \to \mathbb{R}$. We provide an abstract criterion, called control at any scale with a long sparse tail for a point $x\in X$ and the map $\phi$, which guarantees that any weak* limit measure $\mu$ of the Birkhoff average of Dirac measures $\frac1n\sum_0^{n-1}\delta(f^i(x))$ s such that $\mu$-almost every point $y$ has a dense orbit in $X$ and the Birkhoff average of $\phi$ along the orbit of $y$ is zero.As an illustration of the strength of this criterion, we prove that the diffeomorphisms with nonhyperbolic ergodic measures form a $C^1$-open and dense subset of the s…

Pure mathematics37D25 37D30 37D35 28D99Mathematics::Dynamical SystemsDense setGeneral MathematicsNonhyperbolic measure[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]MSC: 37D25 37D35 37D30 28D99[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Partial hyperbolicity01 natural sciencesMeasure (mathematics)FOS: MathematicsErgodic theoryHomoclinic orbit0101 mathematicsMathematics - Dynamical SystemsMathematicsTransitivity010102 general mathematicsZero (complex analysis)Ergodic measure010101 applied mathematicsCompact spaceHomeomorphism (graph theory)Birkhoff averageOrbit (control theory)Lyapunov exponent
researchProduct

Chaotic dynamics and partial hyperbolicity

2017

The dynamics of hyperbolic systems is considered well understood from topological point of view as well as from stochastic point of view. S. Smale and R. Abraham gave an example showing that, in general, the hyperbolic systems are not dense among all differentiable systems. In 1970s, M. Brin and Y. Pesin proposed a new notion: partial hyperbolicity to release the notion of hyperbolicity. One aim of this thesis is to understand the dynamics of certain partially hyperbolic systems from stochastic point of view as well as from topological point of view. From stochastic point of view, we prove the following results: — There exists an open and dense subset U of robustly transitive nonhyperbolic …

Anosov flowPeriodic measureMesure périodiqueExposant de LyapunovTores transversaux[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]Homoclinic classTwist de DehnPartial hyperbolicityDehn twistMesure ergodique non hyperboliqueFlot d’AnosovNon-hyperbolic ergodic measureTransitivité robusteClasse homocliniqueRobust transitivityTransverse torusHyperbolicité partielleLyapunov exponent
researchProduct